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Numerical Simulation of Precipitation Development 
in Supercooled Cumuli-Part II 
WILLIAM R. COTTON-Experimental Meteorology Laboratory, NOAA, Coral Gables, Fla. 

ABSTRACT--A nunicrical model of supercoolcd cuniuli is 
developed and discusscd. Watcr suhstancc in thc niodcl is 
idealized t l J  be partitioned into the five phasc coinponcnts; 
namcly, watcr vapnr, liquid cloud water, liqiiid rainwat,er, 
frozen rainwater, and icc crystals. Continuity equations 
are dcvelopcd t.hat predict thc distribution of watcr sub- 
stance among the five phasc components. The cloud 
dynamic franrewvork consists of a simple onc-dimensional 
Lagrangian model that  includes thc effects of cntrainnicnt. 
Thc model is ahlc to operate either as a stcady-statc model 
or as R sphciical vortex model. 

Thc rcsults of t.wo case study cxpcrinients illustrated 
that  thc principle action of ice particlcs nucleated on 
sublimation nuclei, or by the frcezing of cloud droplets 

~~ ~ 

in cumulus clouds containing modcratc to heavy amounts 
of supercooled rainwater, is to proniotc thc freezing of 
supercooled rainwater. On the othcr hand, clouds con- 
taining small amounts of supercoolcd rainwatcr arc dy- 
namically insensitive to inodcratc conccntrations o f  ice 
crystals. In such clouds, cxtcnsivc riming and vapor 
dcposition growth of crystals in conccntrations of several 
thousand pcr litcr arc required hcforc thcy tnakc significant 
contributions to  the dynamic structurc of thc cloud. 

Finally, i t  was found that  thc warm-cloud prccipitation 
proccss can either invigorate or retard thc dynamic 
behavior of a supercooled cloud, depending upon t.hc 
height and rnagnitudc of thc precipitation process. 

1. INTRODUCTION 

I t  was demonstrated by Cotton (1972) that the formu- 
lation of a reasonable simulation of precipitation develop- 
ment in “warm” cumulus clouds is a particularly difficult 
problem. However, the supercooled cumulus cloud is 
further complicated not only by the presence of a broad 
spectrum of liquid droplets but also by the nucleation and 
growth of various forms of unrimed, rimed, and aggregated 
solid hydrometeors. 

It is consiclered here that nucleation of ice particles 
occurs on, or a t  the expense of, one of the two partitions 
of liquid water. For example, if nucleation takes place 
either by direct activation of sublimation nuclei or by the 
freezing of cloud droplets, the subsequent crystal formed 
is said to have been nucleated a t  the expense of the liquid 
cloud water partition. On the other hand, the nucleation 
or freezing of rainwater is considered to be a t  the expense 
of the rainwater partition. This will be discussed in further 
detail in the following sections. 

2. RAINWATER FREEZING 

Two models of rainwater freezing are considered here. 
The first model is the heterogeneous freezing of rainwater 
via the containment of an active freezing nucleus. The 
second is the freezing of rainwater by the collection of ice 
crystals nucleated a t  the expense of liquid cloud water. 
Additional freezing processes not considered are the 
freezing by surface collection of nuclei and freezing through 
mechanical disturbances such as liquid-liquid drop colli- 
sions, raindrop breakup, and shock waves. The latter 
processes are not sufficiently well defined quantitatively 
to be included in this cloud model. 

a. Heterogeneous Freezing of Rainwater 

The freezing model derived here is based on the concepts 
of supercooled drop freezing developed from laboratory 
experiments. As a first approximation, we consider that 
the stochastic nature of freezing, as implied by the labora- 
tory experiments of Vali and Stansbury (1966), is a second- 
order effect. According to the development of Langham 
and Mason (1958), given a random distribution of nuclei 
through a bulk water sample, the probability that a drop 
will freeze is then a function of the concentration of active 
nuclei per unit volume of water. In particular, they 
specified the cumulative concentration of nuclei per unit 
volume of water active a t  a given supercooling, T,, as 

K (T,) = BseaSTs  

where a, and B, are experimentally deterniined constants. 
(The symbols used in this paper are defined in table 1.) 

Based on the Poisson probability of a droplet containing 
at  least one nucleus active a t  u given supercooling, the 
cumulative fraction of frozen drops of diameterD* SDj2 is 
formulated as 

Before one can apply ey (2) to natural clouds, he must 
be satisfied with the validity of the assumption that nuclei 
are randoml5- dispersed throughout n net unit volume or 
mass of liquid \rater in actual clouds. There is, un- 
fortunately, a significant difference between a \vell-mixed 
laboratory sample of mater divided into drops of a given 
size and the processes of incorporation of aerosol into 
cloud droplets and raindroplets. 
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TABLE l.-Dejinilions of symbols TABLE 1 .-Concluded 

.,I k,Bk coefficients in eq (30) 
crystal geometric accretiou cross-section 
length of basal plane axis of crystal n 

A :  

a.,B. coefficients in eq (I )  
C crystal capacitauce 
Cn drag coefficient of a crystal or prccipitatiou particle 

CP specific heat a t  constaut pressure 
D diameter of precipitation particle 
D average particle diameter 
D. 
DW 
D,",!, 
E 
E(DlC) 
A'( DlZ) 1. 

/CHI. 

C length 01 prism axis of crystal 

- 
diffusivity of water vapor iu air 
diameter of precipitation particle suspcnded by updraft 
diameter of smallest frozen raindrop considered 
collection efficiency employed in eq (41) 
collection efficiency between raindrops of diameter D and cloud droplets 
collectiou efficieiicy calculated with tho Langmuir formula 
collectiou efficiencies employed in eq (42) 
functions deAned in table 3 

aerodynamic drag force 011 a crystal 
concentration of ice crystals nuclrated over the temperature range l 'd=dl ' /2 

C 

C. saturation vapor pressure 
F I )  

J( 1') 
J( Re) ventilation function 
!I acceleratiou of gravity 
K I I  ratio of crystal cross-scctiou to solid cylindrr cross-section 
Kp,Kv,Knp crystal aspect ratios defined in table 3 
K(Td cumulative conce~~t ra t io i~  of freezing nuclei a t  a give11 '1: 

molecular thermal couductivity 
lateut heat of condensation 
liquid water content 
latent heat of fusion 
latent heat of sublimation 
rainwater density or liquid water coutent 
water conteut of precipitatiou particlrs of diameter D=k&Di? 
frozen rainwater deusity or water content 
water content of frozeu particles greater than Dtz,  
rainwater content greatcr than D, 
cloud water density or water conteut 
molecular aeight of water vapor 
intercept coefficient iu eq (18) or tho Marshall-Palmer generating function 
total concc~i t ra t io~~ of precipitation particles 
coneentration of raindrops of dlameter D&taD/? 
rumulative concrntratiou 01 ico crystals or ice nuclei in class .I 
concc~itration 01 ice crystals or icc uuclei in class J 
conccutration of ice nuclei in class .J in cloud ~ n v i r o n n ~ e n t  
cloud aud environment pressurr 
mixing ratio of cloud watrr 
cloud glaciation threshold 
rate of molecular diffusioii of heat away from a rrystal 
mixing ratio of frozen rainwatr.r 
mixing ratio of rainwater 
 nixing ratio of ice crystals 
total mixing ratio of condensed water substanrc 
total mixing ratio of water substance 
water vapor mixing ratio of cloud rnvironmrnt 
saturation mixing ratio with respect to  wator 
saturation mixing ratio with respect to icr 
water vapor mixiiifi- ratio of rloucl 
cloud radius 
gas constant of air 
Rrynolds number 
cloud saturation ratio 
cloud trmpcraturr 
tcmperaturc of cloud environnirnt 
surface trmperaturn of crystal 

iiicdiau tcmprrature of rrystai class I 
perturbatiou iu virtual teinperaturc 
virtual tcmperaturrs of rloud nnd c n v i r o n m ~ ~ ~ t  
time 
lateral entrainmeiit vr1ocit.y 
air velocity relative to an ice crystal 
volume of precipitation particlc 
fall velocity of supcrcoolcd or frozcn raiudroii 
mean trrminal vrlocity of crystals in class I 
tarminal vclocity of an individual irr rrystal 
~~ollection kcrurl bctwcrn crystals and cloud droplrts 
d o u d  updraft velocity 
inass of hydromrtror of dinmctrr I )  
mass of an individual icc crystal 
rate of crystal growtl~ by rirninl: 
vcrtical distancc 
sliccific voluinc of air 
silrrific voluiiic of rrfcrriln 
corllicieuts iu cq (83) 
driisity of irc 

clcgrcc of supcrcooling of cloud 

~~ 

mean density of frozen precipitation 
density of rimed ice deposit 
density of ico formed by vapor depositioii 
ratio of the density of water vapor t o  air 
function defiued in eq (30) 
slope parameter in Marshall-Palmrr generating fui~ctiou and eq (18) 
cntraiunient rate 
molecular kinematic viscosity of air 
functions defined in eq (16) and (17) 
density of cloudy air 
deusity of cloud euvirounient 
density of water 
vapor density some distance away from ice crystal 
vapor deusity a t  surface of ice crystal 

For convenience, we make the assumption that freezing 
nuclei are randomly distributed throughout the total 
rainwater density. Thus, given an estimate of the ciimii- 
lative spectrum of nuclei txtive a t  a given supercooling, 
ecl (2) can then be used to predict the cumulative fraction 
of droplets of tt given diameter that tire frozen. The 
cumulative \\-titer content of drops of clianieter Df 6D/2 
that are frozen is then 

If the rainwkter is ngain size distributed in ti Marshall- 
Palmer (1948) distribution, the rainmiter content frozen 
when a populntion of raindrops is cooled by an tinionnt 
ATs will be 

or 

( 5 )  
Equtition (5) is integrated numeric t i l  I?. 

In nctntil c l o i i t l  experiments, one might, find ii cliniato- 
logical spectrum of nuclei, K( T,) , from in-cloud rtiinivtiter 
snmples. Surfticc rtiin\\-nter samples \\-oultl be of dubious 
value bcc:~use of tlic sn-ecp-out of nersol tis they fall from 
t.lontl base to the sarftice. As :i control nuclei spcct,rtiiii, v-c 
i i s c  tjhc spectrum tlcterniinetl from tIoubl> tlistillctl \\-titer 
1))- (le Pcn:i et8 2 1 1 .  (1 962). 'l'he cocfficientjs in C C ~  (1) iirc thlls 
tlcfinetl to bc Bs= 1.67X 10-5 i i n t l  a,=O.S. 'phc I)rctlictetl 
ct1lllt1liiti\-c friiction of riii1l\\-iltNcr COII t,ent frozcri for the 
control nuclei sl)cctxrini is I)lottetl in figure 1 for different 
v:diies of X corrcs1)onding to \\-titter contents of 2.0, 1.5, 
1.0, 0.5, : i ~ ~ t l  0.25 g.111-~. 

b. Freezing by Collection of Ice Crystals 

C'hange in rainwater content. To discuss tfhc freezing of 
rainwiter by collection of ice crystnls, one must siiiniiiarizc 
the essential features of the distribution of ice crystnls 
tlescribed in further tlctaiiil in section 10. There, ii 21- 
element, discmtc spectral distribution of ice crystals is 
described. 'rhc concentriitioii of ice cryst>nls nudcnted is 
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FIGURE 1.-Cumulative fraction of rainwatcr content, MF, frozen 
by hetcroycneous nucleation (g.rn-9. 

prescribed on the basis of the median temperature of the 
spectral band. In  addition to concentration, average mass, 
a-axis (basal plane axis), nnd e-axis (prism plane axis) 
of each spectral band &re predicted. 

The change in liquid water content M(D) of drops of 
mass X ( D )  and diameter D&sD/2 is described by the 
following equation : 

The change in concentration of raindrops of diameter 
D&tD/2  by collection is described by the so-called 
kinetic equation of collection. Thus, 

(7) 

where V, is the terminal velocity of droplets of diameter 
D,  V, is the terminal velocity of ice crystals in class I, 
E(D(Z) represents the collision efficiency between drops of 
diameter D and crystals in class Z defined relative to the 
cross-section, ?rD2/4, and n(Z)AT(Z) is the concentration 
of ice crystttls in class I .  

The change in total rain\\-tbter content, MT, tlue to 
collection of ice crystals is, therefore, 

If an average collection efficiency, E(DI I ) ,  is considered 
and V,>V,, then eq(8) may be written 

L *l 

-E I VIE(Dll)n(I)AT(Z)Jm 0 D5N(D)dDl l .  (9) 
- 
*Z -‘J 

Replacing N ( D )  in rl.l and J.2 by the Marshall-Palmer 
generating function (Cotton 1971) and V ( D )  as used by 
Liu and Orville (1968), we get 

v (D) = (D;1’b1)P (10) 

where al=2115 cm/s antl bI=0.8.  Integrating, we find 
that 

Similarly, 

In  summary, the total change in rainwater content due 
to collection is 

The average collection efficiency is calculated with the 
Langmuir ant1 Blodgett (1945) formula of collision effi- 
ciency transformed to include the ndtletl geometric cross- 
section of an ice crystal. Thus, if E(Dll), represents the 
efficiency calculated with the Langmuir approximation, 
then the efficiency including the cross-section of crystal is 

\\-here A’ =a for plates antl spherical ice crystals and A’ = 
(a+c)/2 for columns and needles. The collection efficiency 
is computed relative to the droplet corresponding to the 
average mass of the R4arshall-Palmer (1948) distribution. 

Change in ice crystal concentration. To  maintain water 
continuity, one must account for the reduction in ice 
crystal concentration by collection of raindrops. The 
change in concentration of crystal class I is similar to eq 
(7) ; that is, 

-V,IE(DII)n(I)AT(Z)N(D)dD. (8) 
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Defining N(D) and V ( D )  as was done earlier in this 
section, we find 

and 

3. DISTRIBUTION OF FROZEN RAINWATER 
Once a portion of the rainwater is frozen either by crystal 

collection or by heterogeneous freezing, the resultant 
frozen particles can grow predominantly by the accretion 
of cloud droplets and, in the case of a glaciated cloud, by 
vapor deposition. To predict the change in frozen water 
content by either of the above microphysical processes or, 
in the case of an Eulerian dynamic system, by particle 
advection, we must describe the distribution of frozen 
particles. Ideally, one would predict the distribution of 
frozen particles by solving a system of continuity equations 
describing the rates of change of the mass or radius 
spectral density of quasi-spherical, frozen particles. This is, 
of course, an extremely complex numerical problem. 

The approach taken here is to approximate the actual 
distribution of frozen raindrops by an average, in-cloud 
size distribution of frozen particles. Unfortunately, the 
quantity of in-cloud measurements of size distributions of 
frozen particles is scanty. Actual formulations of the size 
distribution of such particles are even fewer. The consensus 
seems to be that frozen particles are distributed approxi- 
mately according to the inverse exponential form similar 
to the Marshall-Palmer (1948) distribution. 

Jones (1960) analyzed a number of observations taken 
with aluminum foil samplers. The data included flights by 
the British Meteorological Research Flight in cumulo- 
nimbus clouds in temperate zones and by Britannia 
aircraft in the Tropics. He found that the concentration 
of particles per cubic meter of diameter Dk6D/2  sampled 
in the tropical cumuli could be approximated by the for- 
mula N(D)=103/D.  In  the case of the temperate zone 
samples, he found that N ( D )  = 103/D2.3 for D <2 mm and 
N(D)=104/D5.4 for D >2 mm. He further demonstrated. 
that the family of curves ,of size distribution could be ap- 
proximated by the equation 

N(D) =Noe-X(D-Dmid (18) 

where Dmln represents the minimum particle diameter 
considered in the formulation. The above equation 
essentially represents a truncated Marshall-Palmer (1948) 
distribution. Jones (1960) chose a minimum particle 
diameter of 250 pm. Fortunately, this is only 50 pni 
greater than the minimum diameter of raindrops 
considered in preceding sections. Because of the change in 
density during freezing, this gap between the two distribu- 
tions is further reduced. 

4. EVALUATION OF DISTRIBUTION PARAMETERS 

Jones (1960) demonstrated that the family of curves of 
size distribution, stratified according to water content, 

could be fitted to eq (18) when 

X=2.67X103A4i1/3 (19) 

where has dimensions of (rn-l) and MF is the water con- 
tent (g-m-9. Equation (19) was found using the assump- 
tion that the mean particle density of the distribution is 
0.6 g ~ c m - ~ .  

By dimensional analysis, one can argue that, given 

X = X ( 6 i ,  No, MF), 

X=k&/3NA/'&fi1/3. (20) 
then 

If has dimensions of (m-l), 

NO=107~1m-J, 
and 

6,=0.6X lo6 

then k will have a value of 2.52X 
The total concentration of the distribution of frozen 

particles can be found by integrating over the entire 
spectrum. Thus, 

P m  

or 

Equation (21) is identical to the result obtained by 
Kessler (1967) for a Marshall-Palmer (1948) distribution. 

5. ACCRETION OF CLOUD WATER 
BY FROZEN RAINDROPS 

Once supercooled raindrops have frozen, they grow pre- 
dominantly by accretion of cloud droplets. Not only does 
this process increase the size of the precipitation elements, 
but i t  also provides a continued source of energy to the 
cloud through the latent heat of fusion of accreted droplets. 

The rate of mass growth of an ice particle of diameter, 
D, by accretion of cloud droplets having a water content, 
m, is given by the equation 

where E(DlC) is the collision efficiency between the ice 
particles and cloud droplets, VD is the terminal velocity 
of the ice particles, and Vc is that of cloud.droplets. 

Because accretion of cloud droplets does not change the 
concentration of frozen precipitation particles, the change 
in frozen-particle water content caused by accretion is 

d~inccr=~m~D21 V,- VCl E(DIC)mN(D)dD. (23) 

Assuming VD >VC, substituting eq (18) into eq (23), 
and employing an average collection efficiency E(DIC), 
we have 
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Given that frozen particles are spherical and that the 
drag coefficient is not a function of diameter, the ter- 

to eq (39), 

minal velocity of frozen particles may be expressed as dX(D)= 4rCG( T, P )  f (Re) (8- 1 ) , (31) dt 

where g represents the acceleration of gravity and pa is the 
density of air. Macklin and Ludlam (1961) found that 
the drag coefficient, CD, for frozen particles varies over 
the range 0.45<CD<0.8. Magono (1954) suggested that CD 
for graupel is typically 0.45. The drag coefficient is taken 
t,o have the value 0.6 over the distribution. 

Substituting eq (25 )  into (24), me find 

If we let 9=(D-Dmin), and 

integrating eq (27) by parts gives us 

(2.5) ( 1.5) (0.5) lm e%& 
+ A3 (++Dmd112 

the terms for which are all discussed in considerable detail 
in subsection loa. For spherical particles, C=D/2. Thus, 
eq (31) becomes 

dm=27rDG( T, P )  .f (Re) (8- 1 ) . d t  

Because vapor deposition does not change the particle 
concentration, the change in total ice-particle water content 
is 

Substituting eq (18) into (33) and considering an average 
ventilation functionf(Re), we find that the rate of change 
of water content by vapor deposition is 

- 

The latter integral mas evaluated by Gradshteyn and 
Ryahik (1965) as 

(29) 
Thus, 

D,”;”, 2 5 D 1.5 + (2.5)(1.5)Dz:n 
A3 

mln 

The average collection efficiency is calculated with the 
Langmuir formula (Langmuir and Blodgett 1945) with 
respect to the mean mass of the frozen-particle distribution 
relative to the mean mass of t,he cloud water distribution. 

6. VAPOR DEPOSITION ON FROZEN RAINDROPS 

At cloud water contents greater than about 0.5 g.m-3, 
the rate of change of ice-particle water content by accre- 
tion of cloud droplets is several orders of magnitude greater 
than that by vapor deposition. In a glaciated cloud or low 
liquid water content clouds, however, neglecting the rate 
of vapor deposition on frozen particles can lead to serious 
errors, since i t  can be an important source of energy. 

The rate of vapor-deposition growth of an individual 
frozen particle of mass X ( D )  and diameter D is, according 
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The ventilation function f(Re) is also evaluated relative 
to the average mass of the distribution. 

7. SYSTEM OF PRIMITIVE ICE CRYSTALS (28) 

This section concerns itself with a system of ice crystals 
that are nucleated at  the expense of liquid cloud water. 
Such crystals may originate either by vapor deposition 
on an active aerosol, which forces evaporation of cloud 
droplets, or by some mechanism of cloud droplet freezing. 
The basic development of the ice crystal model was 
guided by the desire to create a model general enough in 
scope to be able to simulate the role of the ice phase in 
supercooled cumuli. Often, such an objective forced many 
a compromise between the loss of generality and the need 
to bridge specific gaps in the knowledge of the physical 
processes considered. Before we discuss the crystal 
system as a whole, let us first look at  the process of growth 
of individual crystals. 

a. Growth of Single Ice Crystals 

growth of an ice crystal is given by the equation 
Based on the laws of Fickian diffusion, the rate of mass 

=4aCD,g(Re)[p,-pw(r)] (35) dt s 

where C represents the capacitance of the crystal corre- 
sponding to an electrostatic analog, D, is the diffusivity of 
water vapor in air, pw is the vapor density some distance 
from the crystal, p u l ( r )  is the vapor density a t  a distance 
from the surface of the crystal corresponding to the mean 
free path of a molecule, and g(Re) is the ventilation factor 
effecting vapor diffusion. The rate of diffusion of heat 



away from the crystal is TABLE 2.--Crystal growth habit as a function of temperature, T 

d&,- at - 4 ~ C j (  Re) Ki (T, - T) (36) 

where Ki is the thermal diffusion coefficient, f(Re) is the 
ventilation factor effecting thermal diffusion, T, is the 
temperature at the surface of the crystal, and T is the 
temperature some distance away. 

The crystal is taken to be in thermodynamic equilib- 
rium such that the heat added to tthe crystal must be 
liberated to the environment and vice versa. Thus, 

(37) 

where L, is the latent heat of fusion, L, is the latent heat of 
sublimation, and dxi /dt)R is the rate of mass growth of the 
crystal by riming. 

Following a development similar to Byers (1965), we 
obtain the following equation: 

~ T C (  S- 1) 
Ra T 

.f( Re)K,R,TZ+y(Re)MwD,e,( T )  

Assuming that y(Re) =j(Re) and rearranging, we have 

$iS=4aC(S- l).f( Re) G(T, P )  -F(kR,T,P) (39) 

where 

and 

Equation (39) is identical to that derived by Byers 
(1965) with j(Re) approximately unity and with the 
second term on the right side neglected. The second term, 
which represents the contribution to the crystal heat 
balance by the latent heat released during riming, is of 
little importance in cumulus clouds having liquid water 
content (LWC) in excess of 1.0 g.m-3 because once the 
term becomes significant the crystal mass growth is 
dominated by riming. Crystal mass growth rates derived 
from vapor deposition and riming may be of comparable 
magnitude, however, in clouds having LWC of a lesser 
magnitude. The added term can then be important for 
proper prediction of the onset of graupel formation. After 
the first 60 s of growth, the ventilation factor is assumed 
to be nonunity and is formulated similar to Shiskin (1965) 
as 

f(Re) = 1.0+0.2294%. (40 ) 

Temperature range ("C) Crystal habit 

0 >T>-3..0 Hexagonal plates 
-3.0 2 T > _  -5.0 Needles 
- .i.o> T> - 8.0 
-8.0 2 T> - 12.0 
- 12.0 >_ T 2  - 16.0 
- 16.0> T >_ -25.0 
-2.5.0> T Prisms 

Prisms 
Hexagonal plates 
Hexagonal platcs, dendrites 
Hexagonal plates 

b. Crystal Habit 

The habit of ice crystal growth by vapor deposition is 
extremely important in itself and also for crystal riming, 
collection of rainwater, and crystal aggregation. Unfor- 
tunately, there is not complete agreement on the de- 
pendence of crystal growth habit on temperature, super- 
saturation, mode of crystal nucleation, ventilation, and 
electrical forces. The influence of electrical forces on 
crystal habit has not been analyzed sufficiently to be 
considered in this model. There are indications that the 
mode of crystal nucleation (Le., sublimation nuclei, 
freezing, etc.) does influence the habit of young crystals. 
Schaefer (1968), for example, demonstrated that ice 
crystals nucleated on silver iodide or lead iodide crystals 
exhibited habits differing in fine structure from natural 
ice crystals. Weickmann et al. (1970) have pointed out 
that crystals that have been nucleated via frozen cloud 
droplets often exhibit biplanar structures distinct from 
sublimation-nucleated crystals. However, i t  appears that 
the fine structural differences developed during early 
growth may be lost in the mature stages of crystal growth. 
In acldition, the resolution of the crystal model to be de- 
scribed is not capable of simulating such fine structural 
distinctions. Of the remaining habit dependences, tempera- 
ture is by far the dominant parameter. The dependence on 
supersaturation in our cloud model is restricted to the 
case of a water-saturated cumulus cloud. 

Table 2 summarizes the assumed crystal habit as a 
function of temperature and is based largely upon the 
experiments of Hallett and Mason (1958) and Kobayashi 
(1957, 1960). The most controversial temperature regimes 
are those warmer than -3'C, where irregular needles 
have been observed by Nakaya (1954); -15' to -2OoC, 
where spatial dendritic growth is often observed, anti 
-22' to -25'c, where there is a poorly defined transition 
from hexagonal plate growth to columnar forms. 

c. Specific Formulation of the 
Vapor-Deposition Growth Equations 

To integrate eq (39) with time, one must be able to 
specify the variation in crystal capacitance, Re, and riming 
rate. Unfortunately, this requires predictive equations for 
the rates of geometric growth of the crystals. The geometric 
structure of crystals is described in this model by the 
length of two linear dimensions and an identification flag 
to distinguish between dendrites and hexagonal plates. 
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TABLE 3.-Fomulation of crystal capacitance, geometric growth rates, and vapor-deposited mass density 

Crystal bulk density (gcm-3) (for vapor 
deposition only) 

Crystal typr Capacitance term Linear growth rates 

Needles 6i=0.2 

c= ce 
In (E) da dc 

~ = K P ; z ~ .  
Prisms 6,=0.35 

Kp=0.33 

ae 
C=-- 2 sin-' e c<30 p m  

and 

c 2 3 0  pm C=? 
7r 

dc da 
d t - K H P z  
-- 

KHp= 0.12 Hexagonal plates 8i=o.9 

.~ 

Dendrites 

C=2 a dc da 
dt - at 
--- Graupel (a=c) 6i=o.9 

ce 

In (*) l - e  
C= 

e =  .J= 
C2 

Columnar crystals advected into 
planar regimes 

dc -=(I 
dt 8,=0.9 

Planar crystals advected into 
coluninar regimes 

da de 
dt -dt 
_-- 

The rates of growth of the prism axis of length c ,  the basal 
plane axis of length a, and the bulk crystal density are 
specified on the basis of the data of Magono (1954), 
Nakaya (1954), Bashkirrova et al. (1964), Todd (1964), 
Magono and Lee (1966), and Ono (1969). 

Table 3/summarizes the assumed crystal c:lp:lcitilIice, 
linear groivth rates, and bulk density of vapor-deposited 
ice. The author intends to update t,he assumptions regard- 
ing the crystal geometric structure with some of the recent 
data discussed by Ono (1970). We assumed hcre that the 
early stages of dendritic growth tire identical to t>hat of 
hexagonal plates. After a hexagonal plate grows to a 
thickness of 3Opm and is in the temperature range - 12 >_ 
T 2  - 16"C, the crystal is allowed to grow t\vo-dimension- 
ally in the dendritic configuration. 

growth of i l  crystal by riming is then 

where Ai represents the geometric capture cross-section, 
V, is the terminal velocity of the crystal, V, is the terminal 
velocity of the cloud droplet contributing the most to the 
LWC, E is the collection efficiency, and m is the LWC of 
the cloud. Given that ii crystal always falls in a direction 
normal to thc plane of its major dimension, Ai=ac for 
needles and columns, and Ai =*a2/4 for plates, dendrites, 
nncl spherical ice particles. 

Geometric growth by riming is assumed to be in the 
direction of the a-axis for needles and columns and in the 
direction of the c-axis for plates and dendrites. Once IL 

crystal has rimed to the extent that the a- and c-axes are 
of comparable size, the crystal is then considered to be a 
spherical graupel with corresponding geometric cross- 
section, fall velocity, and collection efficiency. The densitj- 

d. Crystal Growth by Riming 

To simulate the growth of primitive ice crystals by 
riming, we adopted a simplc accretion model. The mass 
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of growth by riming, 1., is estimated from the data of 
Nakaya (1954) to be 0.12 g e ~ m - ~ .  The work of Macklin 
(1962) suggests that the density of rimed substance is a 
function of the accreted cloud droplet radius and the 
impact velocity and surface temperature of the crystal. 
However, the empirical formula he developed from his 
experiments is both cumbersome and out of the range of 
conditions for small ice crystal riming. 

The coalescence efficiency is defined to be unity through- 
out this study. Hydrodynamic collision efficiencies are 
estimated from the meager theory and data available for 
simple cylinders, disks, and spheres. The collision 
efficiencies are calculated relative to the cloud droplet 
having the mean mass of the distribution. Cylinder 
efficiencies are estimated from the computations of Davies 
and Peetz (1956) for viscous and transition flow. The 
hydrodynamic efficiencies for simple hexagonal plates are 
calculated by using the simplified theory of Ranz and 
Wong (1952) for inertial impaction on disks. Dendrite 
efficiencies are modified somewhat to account for the effect 
of branching in reducing the geometric cross-section to less 
than that for a solid disk. Thus, for dendrites having an 
a-axis greater than 250 pm, the collection efficiency is 
calculated using the equation 

' 

where a& EHp represents the effective geometric cross- 
section of a 250-pm diameter hexagonal plate kernel, and 
KD is the fraction of the remaining cross-section filled with 
crystal substance. The coefficient K D  is taken to be 0.5. 
Collision efficiencies of spherical collectors are computed 
with the approximate formula developed by Langmuir 
and Blodgett (1945) for potential flow about a sphere. 

e. Crystal Terminal Velocity 

The fall velocity of needle crystals is based on the data 
of Nakaya (1954). However, to take into account the 
variation in terminal velocity with height and the effects 
of riming, we determined the behavior of the drag co- 
efficient (CD) as a functicn of Reynolds number (Re) 
from the Nakaya (1954) data and the modeled crystal 
mass and geometry. Under these conditions, the relation- 
ship was found to be of the form 

Re 
4'A+B(Re); 0.55Re53.0 (43) 

where A=-0.49, and B=1.65. By equating the aerc- 
dynamic drag force to the force of gravity and rearranging 
terms, the terminal velocity of a needle may then be 
found by solving the cubic equation 

where is the total crystal density, y is the acceleration of 
gravity, pa is the density of air, and a is the length of the 
crystal basal plane axis. The terminal velocity of columnar 

- Unrirned Dendrite 
----- Unrirned Hexagonal Plate 

P.950 rnb 
T= I5 "C 

I 

0. I 0.2 0.3 
CRYSTAL o-oxis(cm) 

FIGURE 2.-Predicted terminal velocity versus major dimension of  
an unrimed hexagonal plate and a modeled dendrite. 

crystals was derived from the CD versus Re relationships 
determined by Podzimek (1968) for laboratory-modeled 
columns; the terminal velocity of hexagonal plates was 
derived from the CD versus Re relationships for a cylin- 
drical disk similar to  Shiskin (1965). 

The problem of determining the fail velocity of dendritic 
crystals is much more difficult than would first appear. 
Nakaya (1954) reported that the terminal velocity of 
unrimed dendrites is nearly constant a t  30 cm/s. However, 
the growth model described above adds two complications 
to this simple observation. First, the model predicts that 
dendrites develop from a hexagonal plate kernel. It is 
necessary, therefore, to estimate the transition in terminal 
velocity from that of a hexagonal plate to that of an 
unrimed dendrite. Second, it is desirable to estimate the 
variation in terminal velocity of a dendrite resulting from 
riming. 

The first problem was solved by linear interpolation 
between the computed terminal velocity of the modeled 
hexagonal plate kernel and the constant terminal velocity 
of a pure unrimed dendrite. This curve is shown in figure 2. 
Based on the modeled crystal mass, geometry, and the 
assumed transitional terminal velocity, the corresponding 
CD versus Re relationship was computed as shown in 
figure 3. The best fit to this curve is of the form 

P I  v1 
CL)=CX1+-+- Re (Re)2 (45) 

where al=0.86, p1=1.48, and vl=111.97. 

that 
Solving for the terminal velocity of a dendrite, we find 

Furthermore, if it is assumed that riming does not alter 
the above CD versus Re curve, eq (46) can be applied to 
rimed crystals. The latter assumption is justified for light 
riming because riming growth of dendrites is largely in 

November 1972 f Cotton f 771 



16 ‘*I 
TABLE: 4.--Classification of the spectrum of ice crystals as a filnction 

of nucleation temperature 

Crystal class index ( I )  Median temperature T.(Z) Spectral width (AT) 

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0  60 70 
Re 

FIGURE 3.-Estimated variation of the drag coefficient as a function 
Reynolds number for modeled dendrites. 

the direction of the c-axis (which is taken to be parallel 
to the flow axis) rather than in the direction of the a-axis 
(which would fill in the branched structure and alter C, 
of the crystal). 

The terminal velocity of crystals or ice particles having 
a ratio of large to small axes of less than 1.1 and having 
an Re <20.0 is computed using a technique discussed by 
Fuchs (1964). Fall velocities of similar crystals having a 
larger Re are computed under the assumption that they 
are spherical. 

f. Integration of the Crystal 
Growth Equations. 

All growth equations are initialized bJ- a 60-s, analytic 
integration of the sublimation equations. The analytic in- 
tegration is performed with the additional restriction that 
the ratio a/c is a constant. Further integrations are accom- 
plished numerically by centered differences. Both growth 
by riming and vapor-deposition growth of all crystal forms 
are computed follon-ing the 60-s initialization. A variable 
integration time step of roughly 5 s was found to keep 
truncation errors at a minimum. 

g. Spectrum of Ice Crystals 

T o  predict the distribution of Jvater substance on R 

system of growing ice crystals, one must identify the 
concentration of ice crystals of a given mass and geometric 
structure. In the case of liquid cloud or raindrops, one can 
employ a spect,ral density function of an internal particle 
parameter such as droplet mass or diameter. In  this case, 
since they are nearly spherical, there is a one-to-one 
correspondence bet\\-een the mass of the droplet and its 
dimension. Hon-ever, an ice particle of mass 3: may have 
an a-axis of length a, and a c-axis of length c1 or nearly an 
infinite number of combinations of axis lengths and still 
have mass 2. The obvious solution is to employ a spectral 
density function of z, a, and c .  Storing, manipulating, and 
sohing continuity equations of a three-dimensional spec- 
tral function is rather difficult. It was therefore decided 

(OK) (OK) 

1 272. 4 1. -5 
2 270.9 1. 3 
3 269. 15 2. 0 
4 267. 40 1. .i 
> 265. 90 1. a 
6 264. 1.5 2. 0 
7 262. 15 2. 0 
8 260. 15 2. 0 
9 258. 1.5 2. 0 
10 256. 4 1. .i 
11 254. 9 1. .i 
12 253. 4 1. .i 
13 251. 9 1. .i 
14 250. 4 1. .i 
15 248.9 1. 5 
16 247. 9 2. 0 
17 24.5. 9 2. 0 
18 243. 9 2. 0 
19 241. 9 2. 0 
20 239. 9 2. 0 
21 237. 9 2. 0 

to use a nice crystal spectral function of an external 
parameter. Because the crystal habit and the concentration 
of crystals are largely functions of temperature, the obvi- 
ous external parameter should be nucleation temperature. 

One of the primary conditions that must be met when 
employing an ice crystal spectral density function of 
nucleation temperature is that the spectral bands be 
defined such that only a single habit of gron-th is nucleated 
within the band. To satisfy this condition, each range of 
temperature having a common crystal habit as shown in 
table 2 is subdivided into temperature bands having :I 

width of 1.5°-2.00c. The spectral density of crystals 
nucleated in each band is predicted on the basis of the 
median temperature of the interval. Strictly speaking, the 
term “spectral density” must be used quite loosely with 
regard to the concentration of crystals in each band. In  
essence, we are describing the concentration, mass, and 
geometrj- of several independent monodisperse distribu- 
tions of ice crystals for which the major distinguishing 
feature is the point of origin both in time and in geometric 
space. This point of origin is referenced to a given range of 
nucleation temperature. Table 4 summarizes the resulting 
21-element, discrete spectral distribution of ice crystals. 

8. CLOUD MODEL 

The cloud dynamic framen-ork treated in this and suc- 
ceeding sections can be considered to be tv-o different 
physical models in one. The first model is the steady-state 
jet model that can be traced to the work of Weinstein 
and Davis (1968), Squires and Turner (1962), and orig- 
inating with the work of Stommel (1947). The second 
dynamic model is essentially a simulation of the Experimental 
Meteorology Laboratory (ER4L) spherical vortes model 
described by Simpson and Wiggert (1969). Conceptually, 
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it is considered that one is tracing the life history of a 
rising parcel of air or the center of mass of a spherical 
vortex that is interacting with its environment by 
“entraining” unperturbed environmental air. The physi- 
cal process of entrainment changes the total water con- 
tinuity, affects the thermodynamic structure, and alters 
the momentum of the rising convective element. In  .the 
case of the steady-state model, the Lagrangian predictions 
are interpreted to  represent a steady-state vertical cloud 
profile of water mass, temperature, and momentum that 
has formed during the growth stage of cumulus convec- 
tion. The EML spherical vortex calculations, on the other 
hand, are interpreted to represent the internal cloud prop- 
erties located at  the center of mass of a spherical vortex 
cloud. 

a. Moisture Continuity 

The total moisture mixing ratio, QT, of the modeled 
cloud is assumed to be the sum of five phase components. 
Thus, 

Q T = ~ ~ + Q ~ + Q H + Q F + Q I  (47) 

where po is the cloud vapor mixing ratio, Qc is the cloud 
water mixing ratio, QH is the mixing ratio of rainwater, 
QF is the mixing ratio of frozen hydrometeor water, and 
QI is the mixing ratio of the class of ice particles that 
have nucleated at  the expense of Qc.  

In  the rising cloud parcel, the only sources or sinks of 
Q T  are the result of its mixing with the environment and 
the net fallout of precipitation from the parcel. Hence, 

-p(no-ne+ Qc+ QH+ QF+ Q,)-fallout (48) 

where pe is the environmental vapor mixing ratio, I.( is the 
entrainment parameter, and the last term represents the 
rate of fallout of precipitation as described in subsection 
8f. 

The en trainmen t parameter represents the fractional 
change in cloud mass, M ,  with height; that is, 

1 dM C”=a -& (49) 

It is assumed that the cloud does not become super- 
saturated with respect to water. Thus, the continuity 
equation for po is 

where qs is the saturation mixing ratio with respect to 
water. Applying the Clausius-Clapeyron equation to a 
parcel cooling moist adiabatically with sensible heat 
mixing, we find that 

where d T / d z  is calculated with eq (64) discussed in 

subsection 8c. When Qc is less than an arbitrary threshold 
[Qc (min) in a supercooled cloud], the cloud is assumed 
to be glaciated and is not allowed to become supersatu- 
rated with respect to ice. Thus, the continuity equation 
of pD for a glaciated cloud is 

where psi is the saturation mixing ratio with respect to 
ice. The vertical change in psi is calculated with eq (51), 
the latent heat of condensation, L,, being replaced by the 
latent heat of sublimation, L,; ps is replaced by P.?~;  and 
d T / d z  is evaluated with eq (70). 

The threshold Qc(min) is presently taken to be 0.01 
glkg. The continuity equation for Q, is 

d&L--- dqs pQc-conv-accr ( Q H )  
d z  dz -. . 

-aCCr (QF)-lkliIlg-SUbl. (53) 

The first term on the right side of eq (53) represents the 
production of Qc by condensation. The second term 
represents the dilution of Qc by entrainment of clear air. 
The third term represents the conversion of cloud drop- 
lets to liquid hydrometeors, 

and is described by eq (18) in Cotton (1972) with the 
liquid water content transformed into mixing ratio; w is 
the cloud updraft velocity. The fourth term on the right 
side of eq (53) represents the accretion of Qc by QH, 

dMI 
Z I a c c r  accr ( QH)= ___ W 

described by eq (3) in Cotton (1972), with. the water con- 
tents again transformed into mixing ratios. Similarly, 
the fifth term on the right side of eq (52) represents the 
accretion of Qc by QF described by eq (41) also trans- 
formed to mixing ratios. 

The last two terms in eq (53) represent the growth of 
QI by ice crystal riming and vapor deposition at  the 
expense of QC. If the ice crystal spectral density is in 
dimensions of c~ -~- (OK)- ’ ,  

Since crystal growth by riming and vapor deposition does 
not change the spectral density of crystals, then 

- 
where X ( s )  is calculated with the use of the ice crystal 
model described in section 7 and w is the updraft velocity. 
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Similarly, the continuity equation of QH is 

ar= -pQfr+conv+accr (QH) -freezing-fallout ( Q H )  dz 
(56) 

where the fourth term represents the freezing of QH by 
heterogeneous nucleation and crystal collection as ex- 
pressed by eq (5) and (13), which have been transformed 
to water mixing ratios and spatial derivatives. 

The continuity equation of QF is 

d&F = -pQF+freezing+accr (&F)+subl (QF) dz 
+toll (Qr)-fallout (QF) (57) 

where the fourth term represents the vapor-deposition 
growth on the frozen particles predicted by eq (34), 
which has been transformed to  mixing ratio. The fifth 
term represents the mass added t o  those raindrops that 
have collected ice crystals. Since raindrop collection of 
ice crystals changes only the concentration of the latter, 

aloft, continuity equations predicting the variation in 
the spectral density of ice nuclei, n(J) ,  must be solved. 
The equation of continuity of the spectral density of 
ice nuclei rising in an entraining steady-state cloud 
updraft of radius R is 

Integrating eq (62) through a layer 'of finite thickness 
&, expanding the exponent, and dropping higher ordered 
terms, we find 

d J )  = n ~  ( J )  -ne(J>l~Az. (63) 

In  the case of natural clouds, n,(J)=n(J> (unless an 
intense vert&al gradient of nuclei concentration exists 
in the free atmosphere); thus, mixing will have little 
effect on the concentration of nuclei. I n  a seeded cloud, 
however, n(J)>>n,(J). Hence, entrainment may lead 
to significant reductions in the concentration of ice nuclei. 

1 21 - c. Cloud Thermodynamics . 

The equation for the vertical lapse in temperature of 
a water-saturated cloud is similar to that employed by 

968). Thus, 

=- X(J)n( j )AT(J)  (58) dzeoll paw J = I  

where n(j> is calculated with eq (15). Finally, the continuity Weinstein ,and Davis 
equation of Qr is 

@-riming+subl+coll(Qr) dz - -pQr-fallout ( & I ) .  (59) 

A major change in the model since previous reportings 
(Cotton 1970) is that the ice crystal model is disconnected 
from the thermodynamic system once the cloud becomes 
glaciated. The change in ice mixing ratio by vapor deposi- 
tion in a glaciated cloud is then 

The change was necessary because we found in subsequent 
calculations that truncation errors in the microphysical 
model linked to the thermodynamic-vapor continuity 
equations forced the thermodynamic system away from 
an ice adiabat. Calculations with the ice crystal model 
can be continued, however, by solving for the cloud 
supersaturation in the equation, 

where 
- 4 = 47rCG( T,  P )  ( S  - 1 ) , 

NT is the total crystal concentration, and 
capacitance of the distribution of crystals. 

is the average 

b. Continuity of Ice Nuclei 

Equation (64) differs from that used by Weinstein and 
Davis (1968) in that the term -p(Lc/c , ) (qs2-qe)  is 
not explicitly treated. Weinstein and Davis (1968) 
assumed that the cloud was exactly saturated following 
integration of eq (64) with the above term included. 
I n  addition, the loss of po due to mixing was exactly 
compensated by the evaporation of Qc in the amount 
aQc= -p(ps2-q,)L1z, where qs2 is the saturation mixing 
ratio of the cloud following integration of eq (64) with 
the term in question included. Because ps2 is a function 
of temperature, the amount of cloud evaporation is, in 
fact, an overcompensation. Thus, their technique of 
cloud saturation adjustment following vapor mixing 
results in a cloud that is cooler and drier than it should 
be. To correct this error, we employed a technique of 
adjusting the cloud isobarically to saturation similar to  
that developed by Murray (1970). Suppose that T,, 
qn2, Qcz, and qsz=qs2(Tz) represent the predicted cloud 
properties found by integrating eq (63), (50), and (53) 
over a depth, Az, and using the Clausius-Clapeyron 
equation, respectively. 

isobarically; thus, 
The adjustment to water saturation will be made 

If artificial ice nuclei are introduced at  cloud base or 
if the spectral distribution of natural ice nuclei is con- 

The heat required to adjust the cloud to water saturation 
is 

siderably different from that of the cloud environment 6h=Lc6q,=(cp+a,cp,+Q,c,)6T (66) 
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where cp,  is the specific heat of moist air at constant 
pressure and cw is the .heat capacity of water. Therefore, 
the change in cloud temperature due to saturation ad- 
justment is 

We wish to adjust the vapor mixing ratio such that the 
final vapor mixing ratio is equivalent to the final sat- 
uration mixing ratio. Thus, 

q u 2  +&lu = psz + 6 P S .  (68) 

Substituting eq (65) and (67) into eq (68) and rearranging, 
we find that 

(69) ( q u z - n s z >  

a a s z  

+[Ra~2(cp+y,c,,+Qc~w) 

6q,= - 

To accomplish this adjustment, the amount of Qc that. 
must be evaporated is 6Qc=--6qu. Upon the completion 
of this procedure, the cloud should be exactly saturated. 

The vertical lapse in temperature in a glaciated cloud is 

The glaciated cloud is adjusted to ice saturation using a 
procedure identical to that described for a water-saturated 
cloud except that the appropriate latent heats and satura- 
tion mixing ratios are determined with respect to ice. 

d. Dynamics 

The development of the vertical equation of motion used 
in the model is based on the derivation by Squires and 
Turner (1962). The vertical change in momentum flux 
due to buoyancy forces is 

where p a  represents the density of the parcel, pe represents 
the density of the air, and Qs is the total mixing ratio of 
condensed water substance. 

If we make use of the definition of virtual temperature 
and the equation of state of moist air and rearrange terms, 
eq (71) becomes 

and 

eq (72) may be integrated uualytically from zl to zz, 
assuming Fa and Ka are constant in the layer. Hence, 

To simulate the EML spherical vortex model, we modi- 
fied the forcing term, Fa, by the addition of the virtual 
mass coefficient, y. Thus, 

(T*-Qs)g 

l+r Fa= 

where y is taken to be 0.5, similar to Simpson and Wiggert 
(1969). 

e. Variation in Updraft Radius 

The updraft radius of the EML simulated model is 
simply maintained constant. In  the case of the steady- 
state model, however, the updraft radius is varied to main- 
tain continuity of updraft mass flux. Writing the con- 
tinuity equation of updraft mass flux in logarithmic form, 
we find 

(74) 

If we integrate eq (74) from zI to zz, the cloud updraft 
radius at zz becomes 

R,=R1 (P,w,> e ‘ I 2  exp (0.5pAz). (75) 

One must be cautious in interpreting the predicted up- 
draft radius in terms of the physical appearance of a 
cloud. The active portion of the cloud, which the pre- 
dicted radius is interpreted to represent, is often only a 
small fraction of the apparent cloud radius. Davis et  al. 
(1967) suggest that the updraft radius is roughly one-half 
of the cloud radius. 

f. Precipitation Fallout 

Clearly, one of the most difficult problems that arises 
when one wishes to compare modified Lagrangian parcel 
calculations with actual cloud observations is how to 
predict that portion of hydrometeor water that is trans- 
ported to a given level in a cloud. 

Simpson and Wiggert (1969) have proposed a simple 
scheme of precipitation fallout from a spherical cloud 
bubble of radius R .  That is, the fractional fallout of pre- 
cipitation in each vertical integration is the ratio of the 
time for the tower to rise through a vertical depth, 
Az, to the time for the median-volume diameter chop to 
fall through one radius. This scheme is employed in the 
simulated EML spherical vortex model calculations. 

Applying the Simpson and Wiggert (1969) fallout 
scheme to a steady-state cloud, however, is conceptually 
inconsistent with the steady-state jet interpretation of 
the Lagrangian profile. The characteristic vertical depth, 
R, has no meaning in the case of the jet interpretation. 
Weinstein and Davis (1968) proposed that all precipita- 
tion should be released from a steady-state jet when the 
terminal velocity of the median-volume diameter ex- 
ceeded the updraft velocity. The median-volume diameter 
fall velocity rarely exceeds 4 to 5 m/s. Thus, precipitation 
is carried along until the updraft is nearly destroyed. 
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Howell and Lopez (1968) suggested a unique approach 
that is quite applicable to the steady-state interpretation. 
Their scheme, which they call the "waterwheel," is to 
simply drop out that portion of water [distributed in a 
Marshall-Palmer (1948) distribution] that has a terminal 
velocity in excess of the updraft velocity, w. If D, repre- 
sents the raindrop diameter falling at  a terminal velocity 
equivalent to the updraft velocity, then the water content 
that the cloud parcel leaves behind is 

or 

The critical or cutoff diameter is calculated with the help 
of the fall velocity equation discussed by Cotton (1972):  

k1 (where p=k ' /R) ,  the initial updraft radius, Rot the 
initial temperature perturbation, AT, and the initial 
updraft velocity, wl .  Unless otherwise specified, k' is 
taken to be 0.2, AT=O.O"C, and wl=200 cm/s. for tem- 
perate-zone continental clouds. To simulate maritime 
tropical cumulus, we chose the initrial updraft velocity to 
be in the range 50< w1 < 125 cmp. 

Next, a set of cloud microphysical parameters,is defined. 
'The initial cloud droplet concentration is prescribed to 
predict the average droplet mass. Because the conversion 
parameterization described by Cotton (1972) requires a 
different set of equations for the coefficients, depending on 
the colloidal stability, these are defined internally. 

The cumulative concentration N ( I )  of ice crystal nuclei 
is then specified with 

N ( I ) =  JT*( ' ) f (  T.=O T)dT 

(78)  where f ( T )  represents the concentration of ice crystals 
nucleated over the temperature range T to T f d T / 2 ,  and 
T,(I)  is specified in table 4. 

The cumulative concentration is predicted on the basis 
of efficiency curves for artificial nuclei generators or 
seeding material (sec. 10) or, unless otherwise stated, with 
the exponential nuclei equation discussed by Fletcher 
( 1  962) , 

Equation (77) may be transformed into rainwater mixing 
ratios and cgs dimensions by replacing M,(>D,) and 
MT by QH (>Ow) and QHT and defining D, in (cm) and 
k in (cm-'). 

one can apply a similar philosophy to the case of the 
water density of frozen particles, MF, exceeding the 
equilibrium diameter, D,: N (  T,)  =N,f?*T,, (83) 

M,(>D,) =sm r$ p&70e-A(D-Dm~n)dD. (79) where ps and N,  are assumed to be 0.6 and 

each spectral band is predicted with the equation 

1-' @e., 
liter -'). The spectral density of crystals nucleated in D, 

Integrating eq (79) by parts, we find 

A4J4>D,)= *pfNoe-X [I $ (x3+ 3x2+ 6x+6) 

( x + l )  I D;in3 (80) Strictly speaking, eq (84) is an approximation to the 
exact spectral density, 

where x=X(D,-D,,,J. The equilibrium diameter is 
calculated with eq (27.) in the form 

.,=[-I 3 P a c D  w2 
4 ~ i  (81) but because of the difficulty of specifying n(I) to better 

than an order of magnitude accuracy, the approximate - ~~ 

form is justified. Except for the multiplication experiments 
described in section 10, the spectral density of ice crystal 

described by eq (83) as well. 

The same approach is extended to the ice crystal spectra 

terminal velocity in excess of the updraft velocity. 
by scanning dropping Out  those members having a nuclei characteristic of the natural cloud environment is 

9. NUMERICAL PROCEDURE 

Before model calculations are begun, a raw data upper 
air sounding is read into a computer and interpolated onto 
a log pressure scale (Weinstein and Davis 1968) from 
cloudbase to the top of the sounding in uniform vertical 
increments of length Az. The vertical increment Az is 
taken to be 100 m in the numerical experiments described 
here. 

Following interpolation, a set of boundary conditions 
is prescribed that includes the entrainment constant, 
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Finally , the cumulative concentration of rainwater 
freezing nuclei, K( T,) , is prescribed. Unless either an 
actual data sample or a climatologically averaged spectrum 
is available, the spectrum is computed with eq ( 1 )  and the 
background coefficients described in subsection 2a. 

Following the specification of all boundary conditions 
and cloud microphysical parameters, the cloud parcel 
is integrated vertically in height steps, Az.  All integra- 
tions of moisture continuity equations and vertical lapses 
in cloud temperature are performed numerically with a 
simple first-order integration. Thus, if represents a 
moisture continuity variable (e.g., mixing ratio QC) or 



temperature a t  level i, then the predicted variable at 
level i + 1 is 

(86) dE tz+1=51+& Az. 

Upon completion of this integration, the cloud is then 
adjusted to water saturation. The cloud vertical velocity 
is predicted by analytic integration in the layer with 
eq (73). Similarly, in the case of the steady-state model 
calculation, the updraft radius is predicted by analytic 
integration with eq (75). The vertical integration is 
repeated until the cloud becomes supercooled or the 
updraft velocity vanishes. 

Once the cloud becomes supercooled, the modules 
predicting the changes in Q F  and QI are activated. Because 
the change in QI is predicted by numerical time integra- 
tion of the ice-crystal growth model described in section 
2b, the sum of the microphysical time steps of approxi- 
mately 5 s is exactly meshed with the time it takes a 
parcel to rise through the depth Az. If the vertical change 
in Q F  and QI does not reduce the available Qc below the 
glaciation threshold, Qc(min) , the procedure followed is 
to estimate the water condensed by eq (52) and the 
vertical lapse in cloud temperature with eq (63). 

Once the available Qc is reduced below the glaciation 
threshold, the cloud is defined to be glaciated and the ice 
crystal model is disconnected from the thermodynamic 
system. The cloud is then assumed to follow an ice 
adiabat between integration levels and the calculation 
is analogous to the mixed moist-adiabatic calculation 
employed for warm clouds. This procedure is continued 
until the updraft or cloud vertical rise rate vanishes. 

10. RESULTS AND DISCUSSION 

One of the principal objectives of this study is to 
determine if the cloud-microphysical model described in 
preceding sections, with a proper specification of the 
spectrum of ice crystals, is able i o  simulate both the 
colloidal effects of seeding during the growth stage of 
cumulus convection and the thermodynamic response as 
well. T o  meet this objective, we have chosen two obser- 
vational case studies during which clouds were seeded to 
enhance their dynamic growth. 

The first case study occurred on May 19, 1965, in 
central Pennsylvania and is discussed by Davis et al. 
(1967). Cloud bases in the area were observed at 1.8 
km above mean sea level (MSL) and tops extended from 
4.75 to 5.5 km. Three pyrotechnic flares mere released 
through the center of a 1.75-km-radius cloud. Following 
seeding, the cloud was observed to grow to an altitude of 
about 9.15 km and was observed to have grown laterally 
to a diameter of 20 km. 

The following series of numerical experiments was 
performed on clouds of 1.75-km radius. The initial cloud 
droplet spectrum is assumed to be characteristically 
temperate-continental in structure. Thus, the initial cloud 
droplet concentration is 300 cm-3 with a radius dispersion 
of 0.25. The natural ice crystal nucleation spectrum is 
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FIGURE 4.-Ratio of the concentration of ice particles to ice nuclei 
as a function of temperature (Hobbs 1969). 

simulated by two models. The first is the exponential 
model given by eq (77). This model is taken to represent 
the lower extreme of ice crystal cumulative concentrations. 
Because it was found in earlier numerical experiments 
(Lavoi6 et al. 1970) that the above natural model gave 
ridiculously low precipitation rates in simulated lake- 
induced cumuli, another natural model had to be formu- 
lated. For a more active natural ice crystal model, eq (77) 
is multiplied by the ratio of observed ice crystals to ice 
nuclei as found by Hobbs (1969) and shown in figure 4. 
The cumulative concentrations of natural ice crystals for 
the lower bound, a, and the upper bound, a', are shown 
in figure 5. Because the exact nature of the pyrotechnic 
flare employed in this field experiment is unknown to the 
author, the Olin 1055 pyrotechnic activity curve dis- 
cussed by Simpson et al. (1970) is used to specify the 
effectiveness of the AgI seeding material. If it is assumed 
that three 18-g AgI pyrotechnics introduced into the 
cloud by Davis et al. (1967) burn through a depth of 3 km 
and the seeding material rapidly becomes mixed across the 
width of the cloud, the estimated concentration of AgI is 
1.8 X 10-l2 g/l. Curve b in figure 5 illustrates the 
corresponding cumulative concentration of crystals ac- 
tivated in the cloud. 

Because Davis et al. (1967) observed the cloudbase 
updraft radius and not the cloud-tower radius, these cal- 

1 Mention of a commercial product does not constitute an endorsement. 
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FIGURE 5.-Prescribed nucleated cumulative ice crystal concen- 
tration as a function of cloud temperature for natural clouds, 
a and a', simulated pyrotechnic sceding, b and s, and enhanced 
pyrotechnic seeding, b' and s'. 

culations were performed with the steady-state version of 
the model. Model predictions of cloud updraft velocity as 
a function of height are illustrated in figure 6. The pre- 
dicted cloudtop height of natural clouds a and a' is 5.2 km, 
which is in agreement with the observation by Davis et al. 
(1967) that cloudtops in the area extended from 4.75 to 
5.5 km. Seeding the cloud with AgI concentration (curve 
b) produced no significant alteration in the cloud structure 
or cloud top height. 

Because Davis et al. (1967) observed the seeded cloud 
to grow to an altitude of about 9.15 km, we must now 
determine why the model does not respond to the concen- 
tration of crystals specified by curve b in figure 5. To do 
this, we will first increase the concentration of AgI by 

778 / Vol. 100, No. 11 / Monthly Weather Review 

'O-O r-----l 

W I 4.0 - 

t 1 

FIGURE 6.-Predicted cloud vertical velocity as a function of height 
for May 19, 1965, PSU case study (Davis e t  al. 1967). 

approximately two orders of magnitude to lO-'O g/l. This 
concentration corresponds to that amount of AgI generally 
introduced in south Florida cumuli by Simpson et al. 
(1970) to induce dynamic development. As illustrated by 
curve s in figure 6, the model still does not predict exten- 
sive vertical development. The fact that neither AgI 
concentration s nor b resulted in a predicted significant 
growth may be a consequence of the fact that extensive 
glaciation either did not occur at all or occurred much too 
high in the cloud. Figure 7 illustrates that the predicted 
buoyancy alteration with AgI concentration s was above 
5.0 km, which is well within the inversion shown in the 
sounding in figure 8. 

I t  is apparent that, to predict significant dynamic 
response, we must somehow force the model to glaciate a t  
much warmer temperatures. The laboratory observations 
by Steele and Davis (1969) and field observations by 
Weinstein and Takeuchi (1970) suggest that AgI generator 
calibrations may be in error by three orders of magnitude 
at  warm temperatures. Let us then .;uppose that some 
physical mechanism such as ice crystal multiplication or 
contact nucleation has enhanced ice crystal production at  
warm temperatures. To do this, we activate the entire 
cumulative concentration of crystals formed in the 
laboratory with AgI concentration s over the temperature 
range -4" to -8°C as illustrated by curve s' in figure 5. 
Furthermore, curve b' represents a similar modification to 
curve b. 
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FIGURE 8.-Upper air sounding for May 19, 1965 (Davis et al. 1967). 

Figure 6 illustrates the predicted cloud vertical velocity 
profile when seeded with crystal concentrations s‘ and b‘. 
In  both cases the model predicted an increased cloudtop 
height of over 1 km. 

Figure 7 illustrates that the vertical growth in both 
experiments s’ and b’ is a consequence of additional heating 
at  temperatures higher than -5OC. Figures 9-12 illustrate 
the redistribution of water substance that occurred as a 
consequence of simulated seeding. An important feature in 
figures 9-12 is the circumstance that when ice crystal 
production was simulated to occur high in the cloud, such 
as in natural cloud a’ or seeding experiments s, the water 
content of frozen material was predicted to be principally 
in the form of frozen raindrops, QF. On the other hand, 
seeding experiments s’ and b‘ transferred most of the water 
substance to ice crystals, QI.  This is a consequence of the 
fact that, in the latter experiments, the crystals were 
introduced below the level of maximum production of 
supercooled rainwater, QH. 

It  should be pointed out that although the “seedability” 
predicted with seeding experiments s’ and b’ is significant, 
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FIQURE 9.-Predicted &, as a function of height for May 19, 1965, 
PSU case study. 
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FIGURE 10.-Same as figure 9 for Q H .  

the predicted maximum cloudtop height fell short of the 
9.15-km height of the cloud observed by Davis et al. 
(1967). Since the cloud was also observed to grow laterally 
to a diameter of 20 km, however, the extent of vertical 
growth could well have been a consequence of nonlinear 
dynamic behavior not simulated in this simple model. 

Before we make any further conclusions, let us look at  
the second case study. The second case study chosen for 
numerical simulation was the one of May 27, 1968, 
discussed by Simpson and Wiggert (1971). Two clouds of 
approximately 1 .O-km radius were observed on that day. 
The first cloud was not seeded and was observed to grow 
to 9.1-km height; the second cloud was seeded with 
approximately 1 kg of AgI in pyrotechnic form and was 
observed to grow to about 11.0 km. Because only the 
cloud-tower radius was observed, these experiments will 
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be performed with the EML spherical vortex version of 
the model. 

As in the previous experiments, natural ice crystal 
production is simulated by curves a and a’ in figure 5 .  
Silver iodide seeding is simulated by curve s in figure 5 ,  
which is derived from the AgI activity curve discussed 
earlier and an estimated 1-kg seeded amount of AgI. The 
AgI material is assumed to be well mixed across the radius 
of the cloud and through a depth of 3.0 km. Curve s’ of 
figure 5 is again assumed to simulate enhanced activity of 
the AgI aerosol in natural clouds. 

Figure 13 illustrates the predicted vertical velocity 
profiles for “natural” crystal models a and a’ as well as 
simulated seeding experiments s and s’. An important 
feature here is that the predicted cloudtops of natural 
clouds a and a’ exceed the observed top of cloud 12 by 
0.5-1.0 km. This overprediction may, in part, be a con- 

780 / Vol. 100, No. 11 / Monthly Weather Review 

. 

VELOCITY (m/d 

FIGURE: 13.-Predicted cloud vertical velocity as a function of 
height for May 27, 1968, EML case study. 
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FIGURE 15.-Predicted Qo as a function of height for May 27, 1968, 
EML case study. 

sequence of the predicted glaciation of the cloud at  the 
level of the observed top of cloud 12. As illustrated in 
figure 14, this resulted in a predicted kink in the temper- 
ature-excess curve at  the glaciation level. Similar kinks in 
the temperature-excess curves occur a t  7.0 and 5.5 km for 
seeding experiments s and s’, respectively. This thermo- 
dynamic discontinuity is a consequence of the assumption 
that the cloud immediately relaxes to ice saturation once 
the cloud water content becomes negligible. Earlier calcu- 
lations described by Cotton (1970) did not assume this 
immediate transition. Instead, the cloud mixing ratio was 
evaluated from the depletion of vapor calculated by the 
ice crystal model. Unfortunately, the model thermody- 
namically overshot during this period of transition and 
led to an even larger discontinuity. To some extent, this 
local rise in temperature excess is real, but it certainly 
is spatially too large. I t  is important to recognize that this 
approximation may lead to an error in cloudtop height, 
particularly if glaciation occurs a t  the level a t  which the 
cloud is nearly terminating. 

A second important point is that natural crystal model 
a’ resulted in a predicted cloudtop height 500 m higher 
than that for natural crystal model a. This is in contrast 
to the previous case study in which the model did not 
respond to ‘the higher crystal concentration a’. The source 
of the model’s additional sensitivity to moderate increases 
in ice crystal concentration may be seen in the calculated 
profiles of condensed water substance illustrated in figures 
15-18. Figures 15 and 16 illustrate quite graphically that 
the modeled cloud in the EML case study is considerably 
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FIGURE 16.-Same as figure 15 for Qx. 

wetter than the clouds observed in the Pennsylvania 
State University (PSU) case study. As a consequence, 
the EML case study has a much larger amount of super- 
cooled water available for fusion than the PSU case study. 
Furthermore, because of the larger amount of total con- 
densed water, the EML case study has a proportionately 
larger amount of QH. Given this proportionately larger 
amount of QH, a moderate increase in crystal concentra- 
tion (i.e., to a’) will lead to a significant release of latent 
heat of fusion through the mechanism of raindrop freezing 
by collection of ice crystals. 

Seeding thc cloud with AgI concentration s led to a pre- 
dicted cloudtop height 400 m above that of natural cloud 
a’. I n  comparison with the PSU case study, this growth is 
significant. However, as shown in figure 13, the predicted 
height is well below the observed height of cloud 12. 
Numerical experiments with enhanced AgI activity 
(curve s’) resulted in a predicted cloudtop height that is 
in excellent agreement with the observed height of cloud 
12. Figures 17 and 18 illustrate a major distinction be- 
tween simulated seeding experiments s and s’. In  the 
former experiment, glaciation occurred principally by the 
formation of QF, whereas in the latter experiment i t  occur- 
red principally by the formation of QI. This illustrates 
that seeding experiment s’ resulted in a major alteration of 
the colloidal structure of the cloud, whereas experiment s 
produced a colloidal structure that was qualitatively 
similar to the natural cloud model a’. 

Looking at  the PSU and EML case studies together, we 
see that in neither case did the cloud dynamically respond 
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FIGURE 17.-Same as figure 15 for Q p .  

significantly to the estimated concentration of crystals 
formed by actual AgI pyrotechnic calibrations. This leads 
one to suspect that the calibrations are in error and that 
the enhanced calibration curves b' and s' are perhaps 
more representative of the actual production of crystals in 
the cloud. It would, however, be foolish to  conclude a t  this 
time that these results confirm our suspicions that ice 
crystal production is far more efficient than our laboratory 
simulators suggest. Additional sources of uncertainty in 
the model, such as (1) the growth rate of individual ice 
particles, (2) the rate of production of Q H ,  or (3) the ver- 
tical velocity field, could lead to similar discrepancies. 

Certainly, the net growth predictions of ice particles 
could be in error (in time) by as much as 30 to 50 percent. 
This could not, however, account for the two-three 
order-of-magnit'ude increase in crystal concentrations a t  
high temperatures represented by experiments b' and s'. 

As far as the rate of production of QH is concerned, 
Cotton (1972) demonstrated that his parameterization of 
the collection process is an extremely good simulation of 
Berry's numerical collection experiments. Furthermore, 
numerical experiments with the formulation in a one- 
dimensional, time-dependent model discussed by Cotton 
(1971) demonstrated that the technique resulted in rain- 
water fields that were in good agreement with observations. 

The remaining uncertainty in the model, namely, the 
vertical velocity field, cannot be considered a negligible 
source of error. Neither the steady-state nor the spherical 
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FIGURE 18.-Same as figure 15 for Qr. 

vortex models can predict the magnitude of vertical 
motion within 30 percent of actual cloud values. Sensi- 
tivity experiments have demonstrated that a 30-percent 
decrease in cloud vertical velocity can lead to alterations 
in cloudtop height as large as a two-three order-of- 
magnitude increase in crystal concentration a t  high 
temperatures. This occurs because the reduced vert,ical 
velocity results in increased time for ice particle growth, 
which leads to proportionately more latent heat of fusion 
a t  a given level. We are thus led to conclude that, although 
the model responded well to the enhanced pyrotechnic 
calibrations s' and b', we cannot rule out the possibility 
that uncertainties in cloud vertical velocities could well 
account for a similar model response. 

11. SENSITIVITY TO PRECIPITATION FALLOUT 

It is well known that in models of nonsupercooled 
cumuli the addition of a precipitation process will lead 
to lower total water contents high in the cloud and sub- 
sequently larger effective bouyancy. This, in turn, results 
in a predicted cloudtop height that is often higher in a 
precipitating cloud than in a nonprecipitating cloud. 

In  the case of a supercooled cumulus model, however, 
the presence of a warm-cloud precipitation mechanism 
leads to several peculiar interactions. In  the first place, 
it has been shown that, for a given concentration of ice 
particles, the presence of supercooled precipitation will 
lead to rapid glaciation of the cloud by the process of 
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raindrop collection of ice particles. Thus, the presence of 
a warm-cloud precipitation process will increase the rate 1 would like to  express my appreciation to  Ronald Lavoie of the 
of release of the latent heat of fusion and often result in Department of Meteorology, The Pennsylvania State University, for 
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to  lower total water contents high in the cloud. It can 
easily be shown that the bouyancy gain due to the latent 
heat of fusion of condensed water is greater than the 
bouyancy loss due to the weight Of the same amount Of 

This work was carried out in part as a Ph. D. dissertation study at 
The Pennsylvania State University under Grants NSF-GA-777, 
NSF-GA-3956, and NSF-GA-13818 from the National Science 
Foundation and Contract No. E22-103-68(N) from ESSA (now 
NOAA), Atmospheric Physics and Chemistry Laboratory. 

water. Thus, given that a cloud may penetrate deep into 
a supercooled layer, the presence of a warm-cloud precipi- 
tation mechanism could result in a reduction in predicted 
cloudtop height simply due to  the loss of potential energy 
in the form of total supercooled water. In  terms of the 
dynamic behavior of the cloud, it would appear that the 
most efficient cloud would be one that does not form 
precipitation by warm-cloud mechanisms until it  pene- 
trates deep into a supercooled region where the presence 
of large amounts of total supercooled water in the form 
of precipitation will result in the rapid release of the 
latent heat of fusion. The possible implications of this 
conclusion on the dynamic behavior of supercooled cumuli 
in polluted air masses are many. 

12. SUMMARY AND CONCLUSIONS 

A numerical model has been developed to explore the 
processes of cumulus cloud glaciation and the conse- 
quences of the latent heat so released. Two case studies 
have been analyzed. In  neither case study did the simu- 
lated seeded clouds grow to observed cloudtop heights 
when crystal concentrations were estimated from AgI 
pyrotechnic calibrations. When the crystal concentrations 
were increased by 2-3 orders of magnitude at warm tem- 
peratures, however, the model responded by predicting 
significant increases in cloudtop height. This response 
could be interpreted as further evidence that la,boratory 
simulators of ice crystal production do not simulate all 
the processes in real clouds. It was pointed out, though, 
thtit 30-percent errors in predicted vertical velocity could 
lead to similar cloud responses in some soundings. 

The results of the two case-study experiments illus- 
trated that the principle action of ice particles nucleated 
on sublimation nuclei or by the freezing of cloud droplets 
in cumulus clouds containing moderate to heavy amounts 
of supercooled rainwater is to promote the freezing of 
supercooled rainwater. On the other hand, clouds con- 
taining small amounts of supercooled rainwater are 
dynamically insensitive to moderate concentrations of 
ice crystals. In  such clouds, extensive riming and vapor- 
deposition growth of crystals in concentrations of several 
thousand per liter are required before they make signifi- 
cant contributions to the dynamic structure of the cloud. 
Finally, it was found that the warm-cloud precipitation 
process can either invigorate or retard the dynamic 
behavior of a supercooled cloud, depending upon the 
height and magnitude of the precipitation process. 
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